\(\int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx\) [581]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 97 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=-\frac {2 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

2*b*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
F(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3872, 3856, 2720, 3853, 2719} \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[In]

Int[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x]),x]

[Out]

(-2*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \sqrt {\sec (c+d x)} \, dx+b \int \sec ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-b \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 b \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\frac {2 \sqrt {\sec (c+d x)} \left (-b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b \sin (c+d x)\right )}{d} \]

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Sec[c + d*x]]*(-(b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + a*Sqrt[Cos[c + d*x]]*EllipticF[(c +
 d*x)/2, 2] + b*Sin[c + d*x]))/d

Maple [A] (verified)

Time = 11.89 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.55

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -2 \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(150\)
parts \(-\frac {2 a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(317\)

[In]

int(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

2*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2
^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*b)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.28 \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\frac {-i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} b {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, b \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d} \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 + I*sin(d*x + c))) + I*sqrt(2)*b*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x +
 c))) + 2*b*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\int \left (a + b \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}\, dx \]

[In]

integrate(sec(d*x+c)**(1/2)*(a+b*sec(d*x+c)),x)

[Out]

Integral((a + b*sec(c + d*x))*sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x)) \, dx=\int \left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((a + b/cos(c + d*x))*(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + b/cos(c + d*x))*(1/cos(c + d*x))^(1/2), x)